
Rust for Linux
Status Update

Miguel Ojeda
Wedson Almeida Filho

Rust for Linux

● The project aims to bring Rust support to the Linux kernel as a first-class
language.

●

● This includes providing support for writing kernel modules in Rust, such as
drivers or filesystems, with as little unsafe code as possible (potentially none).

The last year – Infrastructure

● Removed panicking allocations.

● Moved to Edition 2021 of the Rust language.

● Moved to stable releases of the Rust compiler.
○ And started to track the latest version.

● More architectures initial support (e.g. arm (32-bit) and riscv).

● Testing support.
○ Including running documentation tests inside the kernel as KUnit tests.

● Support for “hostprogs” written in Rust.

● On-the-fly generation of target specification files based on the kernel configuration.

The last year – Abstractions

● PrimeCell PL061 GPIO example driver.

● Functionality for platform and AMBA drivers, red-black trees, file descriptors,
efficient bit iterators, tasks, files, IO vectors, power management callbacks, IO
memory, IRQ chips, credentials, VMA, Hardware Random Number Generators,
networking...

● Synchronization features such as RW semaphores, revocable mutexes, raw
spinlocks, a no-wait lock, sequence locks...

● Replaced Arc and Rc from the alloc crate with a simplified kernel-based Ref.

● Better panic diagnostics and simplified pointer wrappers.

● The beginning of Rust async support.

The last year – Related projects

● Rust stabilized a few unstable features we used.

● Improvements on the Rust compiler, standard library and tooling.
○ e.g. rustc_parse_format compile on stable, the addition of the no_global_oom_handling and

no_fp_fmt_parse gates...

● binutils/gdb/libiberty got support for Rust v0 demangling.

● Intel's 0Day/LKP kernel test robot started testing a build with Rust support enabled.

● Linaro's TuxSuite added Rust support.

● rustc_codegen_gcc (the rustc backend for GCC) and GCC Rust (a Rust frontend for
GCC) saw a lot of progress.

● Compiler Explorer added the alternative compilers for Rust, as well as other features such
as MIR and macro expansion views.

Blog post

The origins, progress and future of Rust for Linux.

https://www.memorysafety.org/blog/memory-safety-in-linux-kernel/

https://www.memorysafety.org/blog/memory-safety-in-linux-kernel/

OSSNA 2022

More details on the LinuxCon session:

https://www.youtube.com/watch?v=jIX2gYsgr10

https://www.youtube.com/watch?v=jIX2gYsgr10

Kangrejos

● The Rust for Linux Workshop

● An event where people involved in the
Rust for Linux discussions can meet in
a single place just before LPC.

● https://kangrejos.com

● https://lwn.net/Archives/ConferenceIndex/
#Kangrejos

https://kangrejos.com
https://lwn.net/Archives/ConferenceIndex/#Kangrejos
https://lwn.net/Archives/ConferenceIndex/#Kangrejos

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v9 — Trimming down the patch series

● v8 was the last “full” version of the patch series.

● v9 is a trimmed down v8:

○ Enough support to compile a minimal Rust kernel module.

○ Includes sample that uses Vec<i32> and pr_info! macro.

○ 3% of the kernel crate (500 lines).

○ 60% of the alloc crate (the “adapt” commit is only 100 lines).

○ From 40 to 13 klines.

○ Could be made even more minimal.

The goal is to get the “core” Rust support in first, then start upstreaming the rest piece by piece.

The full repository will continue to be available at https://github.com/Rust-for-Linux/linux.

https://github.com/Rust-for-Linux/linux

v8 — Limited file system support

● Introduction of several Rust wrappers
○ SuperBlock, INode, Dentry, Filename, Type, Context, Registration.

● module_fs macro
○ Simplified definition of modules that only define a file system.

● Support for file system parameters
○ Flags, booleans, strings, enums, u32s (dec, hex, oct), u64s.

● But file system must be empty
○ More on this later.

Support for work queues: fallible enqueuing

spawn_work_item!(workqueue::system(), || pr_info!("Hello from a work item\n"))?;

Support for work queues: fallible enqueuing

spawn_work_item!(workqueue::system(), || pr_info!("Hello from a work item\n"))?;

Which queue to use.

Support for work queues: fallible enqueuing

spawn_work_item!(workqueue::system(), || pr_info!("Hello from a work item\n"))?;

Which queue to use. What to do when it
gets to run.

Support for work queues: fallible enqueuing

spawn_work_item!(workqueue::system(), || pr_info!("Hello from a work item\n"))?;

Which queue to use. What to do when it
gets to run. It involves a memory

allocation, which may
fail.

Support for work queues: infallible enqueuing

struct Example {
 // [...]
 work: Work,
 // [...]
}

kernel::impl_self_work_adapter!(Example, work, |e| {
 // Do work.
});

fn example(e: RefBorrow<'_, Example>) {
 // [...]
 workqueue::system().enqueue(e.into());
 // [...]
}

Support for work queues: infallible enqueuing

struct Example {
 // [...]
 work: Work,
 // [...]
}

kernel::impl_self_work_adapter!(Example, work, |e| {
 // Do work.
});

fn example(e: RefBorrow<'_, Example>) {
 // [...]
 workqueue::system().enqueue(e.into());
 // [...]
}

Work struct
embedded in another
struct, just like in C.

Support for work queues: infallible enqueuing

struct Example {
 // [...]
 work: Work,
 // [...]
}

kernel::impl_self_work_adapter!(Example, work, |e| {
 // Do work.
});

fn example(e: RefBorrow<'_, Example>) {
 // [...]
 workqueue::system().enqueue(e.into());
 // [...]
}

Work struct
embedded in another
struct, just like in C.

Declare function to
run when the work
item runs.

Support for work queues: infallible enqueuing

struct Example {
 // [...]
 work: Work,
 // [...]
}

kernel::impl_self_work_adapter!(Example, work, |e| {
 // Do work.
});

fn example(e: RefBorrow<'_, Example>) {
 // [...]
 workqueue::system().enqueue(e.into());
 // [...]
}

Work struct
embedded in another
struct, just like in C.

Declare function to
run when the work
item runs.

Enqueueing never
fails, like in C.

Workqueue-based async executor

let mut handle = Executor::try_new(workqueue::system())?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

Workqueue-based async executor

let mut handle = Executor::try_new(workqueue::system())?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

Creates executor
handle that uses the
system work queue.

Workqueue-based async executor

let mut handle = Executor::try_new(workqueue::system())?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

Creates executor
handle that uses the
system work queue.

Creates new task to
run in executor.

Workqueue-based async executor

let mut handle = Executor::try_new(workqueue::system())?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

Creates executor
handle that uses the
system work queue.

Creates new task to
run in executor.

Executor automatically
stopped when handle
goes out of scope.

Echo server sample

async fn echo_server(stream: TcpStream) -> Result {
 let mut buf = [0u8; 1024];
 loop {
 let n = stream.read(&mut buf).await?;
 if n == 0 {
 return Ok(());
 }
 stream.write_all(&buf[..n]).await?;
 }
}

async fn accept_loop(listener: TcpListener, executor: Ref<impl Executor>) {
 loop {
 if let Ok(stream) = listener.accept().await {
 let _ = spawn_task!(executor.as_ref_borrow(), echo_server(stream));
 }
 }
}

Echo server sample

async fn echo_server(stream: TcpStream) -> Result {
 let mut buf = [0u8; 1024];
 loop {
 let n = stream.read(&mut buf).await?;
 if n == 0 {
 return Ok(());
 }
 stream.write_all(&buf[..n]).await?;
 }
}

async fn accept_loop(listener: TcpListener, executor: Ref<impl Executor>) {
 loop {
 if let Ok(stream) = listener.accept().await {
 let _ = spawn_task!(executor.as_ref_borrow(), echo_server(stream));
 }
 }
}

Giving up thread on
await points.

Echo server sample

async fn echo_server(stream: TcpStream) -> Result {
 let mut buf = [0u8; 1024];
 loop {
 let n = stream.read(&mut buf).await?;
 if n == 0 {
 return Ok(());
 }
 stream.write_all(&buf[..n]).await?;
 }
}

async fn accept_loop(listener: TcpListener, executor: Ref<impl Executor>) {
 loop {
 if let Ok(stream) = listener.accept().await {
 let _ = spawn_task!(executor.as_ref_borrow(), echo_server(stream));
 }
 }
}

Giving up thread on
await points.

Generic executor.

Echo server sample

async fn echo_server(stream: TcpStream) -> Result {
 let mut buf = [0u8; 1024];
 loop {
 let n = stream.read(&mut buf).await?;
 if n == 0 {
 return Ok(());
 }
 stream.write_all(&buf[..n]).await?;
 }
}

async fn accept_loop(listener: TcpListener, executor: Ref<impl Executor>) {
 loop {
 if let Ok(stream) = listener.accept().await {
 let _ = spawn_task!(executor.as_ref_borrow(), echo_server(stream));
 }
 }
}

Giving up thread on
await points.

Generic executor.

New task per connection.

Basic RCU read-side locking

fn add_pair(value: &Revocable<(u32, u32)>) -> Option<u32> {
 let guard = rcu::read_lock();
 let pair = value.try_access_with_guard(&guard)?;
 Some(pair.0 + pair.1)
}

Basic RCU read-side locking

fn add_pair(value: &Revocable<(u32, u32)>) -> Option<u32> {
 let guard = rcu::read_lock();
 let pair = value.try_access_with_guard(&guard)?;
 Some(pair.0 + pair.1)
}

Acquire read-side
lock.

Basic RCU read-side locking

fn add_pair(value: &Revocable<(u32, u32)>) -> Option<u32> {
 let guard = rcu::read_lock();
 let pair = value.try_access_with_guard(&guard)?;
 Some(pair.0 + pair.1)
}

Acquire read-side
lock.

Present as evidence
that lock is held.

Outlives pair.

Simple creation of kernel threads

Task::spawn(fmt!("task{i}"), || pr_info!("Hello from thread\n"))?;

Simple creation of kernel threads

Task::spawn(fmt!("task{i}"), || pr_info!("Hello from thread\n"))?;

Formatted name of
the task.

Simple creation of kernel threads

Task::spawn(fmt!("task{i}"), || pr_info!("Hello from thread\n"))?;

Formatted name of
the task.

Thread body.

Simple creation of kernel threads

Task::spawn(fmt!("task{i}"), || pr_info!("Hello from thread\n"))?;

Formatted name of
the task.

Thread body.
May fail.

Miscellaneous

● IRQ handling
○ Allow drivers to handle IRQs, part of NMVe driver.

● AsyncRevocable
○ Allows revocation to happen asynchronously, when last concurrent user finishes.

● StaticRef
○ Allow creating "ref-counted" globals so that they can be used where Ref and RefBorrow are

expected.
● yield_now

○ yield execution of async task.
● unsafe_list::List

○ Intrusive circular doubly-linked list, head is not self-referential.

Upcoming

Consuming File objects
impl File {
 pub fn open(name: &CStr, flags: u32) -> Result<ARef<Self>>;
 pub fn read(&self, out: &mut [u8], offset: u64) -> Result<u64>;
 pub fn readdir<T: FnMut(&[u8], u64, u64, u32) -> Result<bool>>(
 &self,
 index: u64,
 cb: T,
) -> Result;
 pub fn inode(&self) -> &fs::INode;
 pub fn dentry(&self) -> &fs::DEntry;
 pub fn path(&self) -> &fs::Path;
}

impl Path {
 pub fn lookup(&self, name: &[u8], flags: u32) -> Result<Self>;
 pub fn open(&self, flags: u32, cred: &Credential) -> Result<ARef<file::File>>;
}

9p server

● No unsafe blocks at all.

● Uses async support, async networking, and consuming File objects.

● Exposes a server on port 564.

● 9p clients (including the Linux kernel one) can mount it.

● Still WIP, more details here.

https://kangrejos.com/Async%20Rust%20and%209p%20server.pdf

Local async executor

let mut handle = Local::try_new()?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

handle.run(false)?;

Local async executor

let mut handle = Local::try_new()?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

handle.run(false)?;

Creates a local
executor.

Local async executor

let mut handle = Local::try_new()?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

handle.run(false)?;

Creates a local
executor.

Creates new task to
run in executor.

Local async executor

let mut handle = Local::try_new()?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

handle.run(false)?;

Creates a local
executor.

Creates new task to
run in executor.

Run tasks on current
thread.

Local async executor: dedicated thread

let mut handle = Local::try_new()?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

handle.run_on_dedicated_thread(true, fmt!("example-thread"))?;

Local async executor: dedicated thread

let mut handle = Local::try_new()?;

spawn_task!(handle.executor(), async {
 pr_info!("First workqueue task\n");
})?;

spawn_task!(handle.executor(), async {
 pr_info!("Second workqueue task\n");
})?;

handle.run_on_dedicated_thread(true, fmt!("example-thread"))?;

Run tasks on dedicated
thread.

Static but non-empty file system support
fn fill_super(_data: (), sb: fs::NewSuperBlock<'_, Self>) -> Result<&fs::SuperBlock<Self>> {
 let sb = sb.init(
 (),
 &fs::SuperParams {
 magic: 0x72757374,
 ..fs::SuperParams::DEFAULT
 },
)?;
 let root = sb.try_new_populated_root_dentry(
 &[],
 kernel::fs_entries![
 file("test2", 0o600, "def\n".as_bytes(), FsFile),
 char("test3", 0o600, [].as_slice(), (10, 125)),
 sock("test4", 0o755, [].as_slice()),
 fifo("test5", 0o755, [].as_slice()),
 block("test6", 0o755, [].as_slice(), (1, 1)),
 dir(
 "dir1",
 0o755,
 [].as_slice(),
 [
 file("test1", 0o600, "abc\n".as_bytes(), FsFile),
 file("test2", 0o600, "def\n".as_bytes(), FsFile),
]
),
],
)?;
 sb.init_root(root)
}

Static but non-empty file system support
fn fill_super(_data: (), sb: fs::NewSuperBlock<'_, Self>) -> Result<&fs::SuperBlock<Self>> {
 let sb = sb.init(
 (),
 &fs::SuperParams {
 magic: 0x72757374,
 ..fs::SuperParams::DEFAULT
 },
)?;
 let root = sb.try_new_populated_root_dentry(
 &[],
 kernel::fs_entries![
 file("test2", 0o600, "def\n".as_bytes(), FsFile),
 char("test3", 0o600, [].as_slice(), (10, 125)),
 sock("test4", 0o755, [].as_slice()),
 fifo("test5", 0o755, [].as_slice()),
 block("test6", 0o755, [].as_slice(), (1, 1)),
 dir(
 "dir1",
 0o755,
 [].as_slice(),
 [
 file("test1", 0o600, "abc\n".as_bytes(), FsFile),
 file("test2", 0o600, "def\n".as_bytes(), FsFile),
]
),
],
)?;
 sb.init_root(root)
}

Implements file::Operations.

Next milestones

● More users or use cases inside the kernel, including example drivers.

● Extending the current integration of the kernel documentation, testing and
other tools.

● Getting more subsystem maintainers, companies and researchers involved.

● And, of course, getting merged into the mainline kernel!

Events

● Kernel Summit at LPC 2022

○ Join us for the Rust session on Wednesday at 15:45.
https://lpc.events/event/16/contributions/1225/

● Two more Linux Foundation Live Mentorship Series are coming

○ https://events.linuxfoundation.org/lf-live-mentorship-series/

https://lpc.events/event/16/contributions/1225/
https://events.linuxfoundation.org/lf-live-mentorship-series/

Thank you!

Questions?

Rust for Linux
Status Update

Miguel Ojeda
Wedson Almeida Filho

Backup slides

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Safe Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

bindgen

bindings
crate

Rust tree Linux tree

